
Binary representation

A-Level
Computer Science



Lesson Objectives

Students will learn about:

▪ The binary representation of numbers

▪ Understand the units of computer memory

▪ Converting denary numbers to a binary system and vice versa

▪ Adding binary numbers

▪ Binary shifts

▪ Bitwise operations

▪ Representing negative numbers in a binary system

▪ Binary Coded Decimal (BCD)

2



Content

1.



Introduction

▪ A computer has many electronic components that work as 

switches. 

▪ These components have two logics as input and output: ON 

and OFF. 

▪ A similar logic is used to represent data in binary form. ON is 

represented as 1 and OFF is represented as 0. 

4



“

In the history of culture, the 

discovery of zero will always stand 

out as one of the greatest single 

achievements of the human race.
–Tobias Dantzig, in Number: the Language of Science, 1930

5



Place value of denary system

6

▪ The denary 

system has a 

base value of 10. 

▪ It counts in 

multiples of 10. 



Place value of binary system

7

▪ The place values of binary numbers are of base 2.

128 64 32 16 8 4 2 1



Place value of binary system

8



Place value of binary system

9



Converting denary to binary

Divide the number 
by 2 and write down 

the remainder

Continue 
dividing the 

quotients by 2 
and write down 
the remainder 

List all the 
remainders in 
reverse order

10



Converting denary to binary

11

i. A denary number 
is converted to 
binary by dividing 
it by 2 and 
calculating the 
remainders.

ii. The binary 
equivalent is 
obtained by 
arranging the 
remainders in 
reverse order.



How to check your answer?

12

▪ The binary equivalent of denary number 91:

▪ The answer can be checked by:

(0×128)+(1×64)+(0×32)+(1×16)+(1×8)+(0×4)+(1×2)+(1×1)=91

0 1 0 1 1 0 1 1



Activity-1
Duration: 15 minutes

1. Find the binary equivalent of denary number 113.

2. Check your answer by using the appropriate place values.

13



Size of computer memory

14

▪ A binary digit is referred to as a bit. 

▪ A nibble consists of 4 bits. 

▪ A byte consists of 8 bits. 

▪ A byte is the smallest unit of memory of the computer system. 

▪ The memory sizes available with computers are in multiples of 8 
such as 16-bit systems, 32-bit systems, etc.



Size of computer memory

15

▪ The memory sizes were originally 
standardised using the base-2 
representation. 

▪ In this system, the prefixes kibi-, 
mebi-, gibi-, tebi- are used to avoid 
conflicts with the base-10 system.

▪ This representation is now used 
for representing the size of RAM 
modules only. 

New name of the 

memory size

Number 

of bytes
Equivalent to

1 kibibyte (1 kiB) 1024 bytes

1 mebibyte (1 MiB) 10242 bytes

1 gibibyte (1 GiB) 10243 bytes

1 tebibyte (1 TiB) 10244 bytes



Size of computer memory

16

▪ After the standardisation 
of base-10 
representation, the 
memory sizes are now 
represented as given.

Name of the 

memory size

Number of 

bytes
Equivalent to

1 kilobyte (1 kB) 1000 bytes

1 megabyte (1 MB)
1000000 bytes or 

1000 kB

1 gigabyte (1 GB) 1000 MB

1 terabyte (1 TB) 1000 GB

1 petabyte (1 PB) 1000 TB



Binary combinations

17

▪ A one-bit system has a one-place 
value and can have 2 possible 
combinations: 0 or 1.

▪ Similarly, a 2-bit system has two-
place values and has 4 possible 
combinations as shown in the 
table.

Place 

value 2

Place 

value 1

Binary 

number

Denary 

number
0 0 00 0

0 1 01 1

1 0 10 2

1 1 11 3



Binary combinations

18

Similarly, a 3-bit system has 
three-place values and has 8 
possible combinations.

Place 

value 3

Place 

value 2

Place 

value 1

Binary 

number

Denary 

number

0 0 0 000 0

0 0 1 001 1

0 1 0 010 2

0 1 1 011 3

1 0 0 100 4

1 0 1 101 5

1 1 0 110 6

1 1 1 111 7



Representing numbers

▪ Programmers use many arithmetic operations in a program. 

▪ The numbers are either represented as integers or floating point 

numbers. 

▪ Integers are whole numbers and floating point numbers are used to 

represent numbers with decimal points. 

▪ A 16-bit system can represent integers up to 216-1=65535. 

▪ 8-bit, 16-bit, 32-bit and 64-bit are the most common bit lengths.

19



Adding binary numbers

20

▪ Binary numbers are added 

in a column method as the 

denary numbers are added.

▪ Adding 0101 and 1011 in 

the table.

▪ Adding binary numbers

✔ 0+0=0

✔ 1+0=1

✔ 1+1=10 (1 is carried over)

Place 
value 4 

Place 
value 2 

Place 
value 3 

Place 
value 1 

Carry 1

Number 1 0 1 0 1

Number 2 1 0 0 1

Sum 1 1 1 0



How to check your answer?

21

▪ 0101 and 1001 represent the 
denary numbers 5 and 9. 

▪ The sum of 5 and 9 is 14. 

▪ Convert the sum obtained to 
denary number.

▪ (8×1)+(4×1)+(2×1)+(0×1)=14

Place 
value 4 

Place 
value 2 

Place 
value 3 

Place 
value 1 

Carry 1

Number 1 0 1 0 1

Number 2 1 0 0 1

Sum 1 1 1 0



Overflow error

▪ A CPU with an 8-bit register has a capacity of up to 11111111 in binary. 

If an extra bit is added, it is said to be an overflow error. 

▪ The number of bits a register can hold is called the word size. 

Exceeding the capacity of the word size in a register results in an 

overflow error. 

22



23

Overflow error

▪ Consider the addition of two 

binary numbers 11101101 and 

10000100.

▪ The sum of these two numbers is 

bigger than 8 bits (an extra bit 

than the register can hold). 

▪ The computer thinks that 

11101101+10000100=01110001 

as it does not have space to store 

the extra bit. 

Carry 1 1 1

Number 1 1 1 1 0 1 1 0 1

Number 2 1 0 0 0 0 1 0 0

Sum 1 0 1 1 1 0 0 0 1



Activity-2
Duration: 15 minutes

1. What is the binary equivalent of denary numbers 11 and 14.

Show your working.

2. Add the two binary numbers obtained in question 1. Show your

working.

3. Find the denary equivalent of the sum obtained in question 2.

Show your working.

4. Play game:

https://learningcontent.cisco.com/games/binary/index.html

24

https://learningcontent.cisco.com/games/binary/index.html


25

Shifting Right:

The Least Significant Bit 

(LSB) shifts to the carry 

and the MSB is occupied 

by a zero.

Binary shifts

C

1 0 1 0 1 0 1 1 0

Before 
shifting:

(msb) (lsb)
C

0 1 0 1 0 1 0 1 1

After 
shifting:



26

Shifting Left:

The Most Significant Bit 

(MSB) shifts to the carry 

and the LSB is occupied 

by a zero.

Binary shifts
C (msb) (lsb)

0 1 0 1 0 1 0 1 1

Before 
shifting:

C (msb) (lsb)

1 0 1 0 1 0 1 1 0

After 
shifting:



27

▪ Shifting 132 to the right:

▪ The decimal equivalent of the 

number obtained when the 

binary equivalent of 132 is 

shifted to the right is: 66.

▪ Therefore, shifting a number 

to the right is equivalent to 

dividing a number by 2.

Binary shifts

(msb) (lsb)
C

1 0 0 0 0 1 0 0 0

Before shifting (denary number 132):

(msb) (lsb)
C

0 1 0 0 0 0 1 0 0

After shifting to the right (denary number 66):



28

▪ Shifting the number 132 

to the left.

▪ This binary number is 

equivalent to denary 

number 264. 

▪ Therefore, shifting a 

number to the left is 

equivalent to multiplying 

a number by 2.

Binary shifts
C

0 1 0 0 0 0 1 0 0

Before shifting (denary number 132):

After shifting to the left (denary number 264):

C (msb) (lsb)

1 0 0 0 0 1 0 0 0



29

▪ It can be summarised that when a denary number is multiplied by 2, its 

binary equivalent shifts left by 1 place. 

▪ Also, multiplication by 4 results in a shift of the  binary equivalent by 2 

places.

▪ Multiplication by 8 results in a shift of the binary equivalent by 3 places, 

and so on.

Binary shifts



30

▪ Sometimes, multiple byte operations are performed. 

▪ For example: Dividing a 16-bit number by 2. 

▪ Some processors only support an 8-bit register. In order to hold a 16-bit 

number, we require two 8-bit registers. 

▪ Shifting operations in such processors are done in a circular form. 

Binary shifts



31

▪ Circular right shift

Binary shifts

C

1 0 1 0 1 0 1 0 1

After 
shifting:

Before 
shifting:

1 0 1 0 1 0 1 1
C

0



32

▪ Consider that a number is stored in two 8-bit registers, A and B with the upper half in 

register A.

Binary shifts

1 1 1 0 1 0 1 0 0 1 1 1 0 0 1 0
C

0

Reg. A Reg. B



33

Dividing 16-bit 

number by 2: 

▪ Step 1: Shifting 

the contents of 

Reg. A to the 

right.

▪ Step 2: 

Performing a 

circular right 

shift in reg. B.

Binary shifts

0 1 1 1 0 1 0 1
C

0

0 1 1 1 0 0 1 0

0 1 1 1 0 1 0 1
C

0

0 0 1 1 1 0 0 1

1 1 1 0 1 0 1 0 0 1 1 1 0 0 1 0
C

0

Reg. A Reg. B
Step 1:

Step 2:



34

The logic operations are:

• NOT: Complements the binary value

• AND: Produces output ‘1’ only when both the inputs are ‘1’

• OR: Produces output ‘1’ when at least one of the input is ‘1’

• XOR: Produces output ‘1’ when both the outputs are different,

otherwise produces ‘0’

Bitwise operations



35

Bitwise operations

A 1 1 0 1

Not A 0 0 1 0

A 1 1 0 1

B 0 1 1 1

A and B 0 1 0 1

A 1 1 0 1

B 0 1 1 1

A or B 1 1 1 1

A 1 1 0 1

B 0 1 1 1

A xor B 1 0 1 0



36

These logical operations are used to manipulate bits in a number.

▪ For example:

▪ An OR function is used to convert some bits to ‘1’ without affecting

the other bits.

▪ Similarly, the AND function is used to convert some bits to ‘0’ without

affecting the other bits.

▪ The XOR function is used to invert selected bits.

This concept of manipulating bits, that is, setting selected bits true or

false is called masking.

Bitwise operations



37

Consider a 16-bit register that holds two bytes. To set the second byte to

zero, the AND function is used.

Bitwise operations

First byte Second byte

A 1 1 1 0 1 0 1 0 0 1 1 1 0 0 1 0

B 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

A and B
1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0



38

To complement the first byte for a value stored in 16-bit register, the

XOR function is used.

Bitwise operations

First byte Second byte

A 1 1 1 0 1 0 1 0 0 1 1 1 0 0 1 0

B 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

A xor B
0 0 0 1 0 1 0 0 0 1 1 1 0 0 1 0



39

To set the first 4 bits of a number to ‘1’, the OR function is used.

Bitwise operations

First byte Second byte

A 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 0

B 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

A or B
1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 0



40

▪ Consider the 8-bit binary number 10001101.

▪ The smallest number that can be represented using 8 bits is 11111111 

(-127) and the largest number is 01111111 (+127).

▪ Similarly, the signed number can be represented in 32-bits, 64-bits and 

so on.

Representing negative numbers

Sign 

bit
Magnitude

Binary 1 0 0 0 1 1 0 1

Denary -13



Finding two’s complement

▪ Finding two’s complement is an alternate method to represent negative 

numbers. This method is used by most computers to perform 

mathematical operations.

▪ Let us consider an example of representing -5. The binary value of 5 is 

101. The leftmost bit is added to represent the positive sign. +5 is 0101. 

▪ Each bit is inverted and, hence, the 0101 becomes 1010. 1 is added to 

this number. 1010 + 1=1011. 

41



Finding two’s complement

Some 

examples

42

Sign bit
(-23)

(23) (22) (21) Denary 
number

1 0 1 1 -5

0 1 1 1 7

1 0 0 1 -7

1 1 0 1 -3



Subtracting numbers: 
Using two’s complement

▪ Let us consider adding -4 and 

3 using two’s complement.

▪ Converting the sum 1111 into 

denary number,

-8+4+2+1=-1

43

Sign 
bit

(-23)
(23) (22) (21) 

Carry

Number 1 = -4 1 1 0 0

Number 2 = 3 0 0 1 1

Sum 1 1 1 1



Subtracting numbers: 
Using two’s complement

Another method to convert a negative number in 2’s complement to 

denary is:

▪ Invert the bits and add 1. 

▪ Convert the obtained number to denary. 

▪ For example: 1111→ (0000) & 0000 +1 → - 0001 → -1

44



Activity-3
Duration: 15 minutes

1. Convert the denary numbers -15 and 11 to 8-bit signed

numbers. Show your working in the box below.

2. Add the two binary numbers obtained in question 1. Show your

working in the box below.

3. Find the denary equivalent of the sum obtained in question 2.

Show your working in the box below.

45



Binary Coded Decimal (BCD)

• In some applications, single denary digits are stored and transmitted. In such 

cases, Binary Coded Decimal (BCD) is used. 

• In BCD, four bits are used to represent a denary number. 

• If there are more than two digits in a denary number, then there are two 

possible solutions:

▪ One BCD digit per byte: In this method, the 4 least significant bits of a 

byte are used to store the denary digit. The other 4 bits remain unused.

▪ Packed BCD: In this method, two denary digits are grouped together in a 

byte. 

46



Binary Coded Decimal (BCD)

• Representing the denary digits 9276 in these two methods,

47

9 2 7 6

One BCD digit 

per byte

00001001 00000010 00000111 00000110

Packed BCD 1001 0010 0111 0110



Binary Coded Decimal (BCD)

• Consider two fixed-point numbers 

0.25 and 0.75 represented using BCD, 

the first byte represents the whole 

number part, and the second byte 

represents the two digits of the 

fractional part. 

• Adding the numbers, we get a wrong 

answer.

• The result represents the number 

point nine ten, which has no meaning. 

48

whole 
number

fractional 
part

0.25 00000000 0010 0101

0.75 00000000 0111 0101 +

error 00000000 1001 1010



• To rectify this, an additional 

step is included when 

adding numbers in BCD 

format. 

• The remedy is to add 0110 

(denary number 6) 

whenever an invalid BCD 

number is obtained. In a 

nibble, numbers 0-9 are 

valid in BCD and the 10-15 

are invalid.

• Using this method, the 

correct result of 1.00 is 

obtained.

49

0.25 00000000 0010 0101

0.75 00000000 0111 0101 +

00000000 1001 1010

Add 0110 to LSB 0110

1 0000

00000000 1001 0000

Add 0110 + carry 

to next nibble

0111 0000 +

1 0000 0000

Add carry to the 

next nibble

0000 0001 0000 0000



Let’s review some concepts

Binary number system

The place values have a base 2.

Computer memory

A binary digit is referred to as 
a bit. 

A nibble consists of 4 bits. 

A byte consists of 8 bits. 

Converting denary to binary
Divide the number by 2 and write 
down the remainder.
Keep dividing the quotient by 2 
and write down the remainders.
List the remainders in reverse 
order.

Binary combinations

An n-bit system has 2n binary 
combinations.

Adding binary numbers

0+0=0

1+0=1

1+1=10 (1 is carried over)

Overflow error

The number of bits a register can 
hold is called the word size. 
Exceeding the capacity of the 
word size in a register results in 
an overflow error. 

50



Let’s review some concepts

Binary shifts

Shifting left: Multiplying by 2

Shifting right: Dividing by 2

Bitwise operations

NOT, OR, AND & XOR

Masking:
OR: set selected bits to ‘1’

AND: set selected bits to ‘0’

XOR: invert selected bits

Signed numbers

An extra bit is used to represent 
the sign of a number in binary 
representation. 

2’s complement

Add 0 to the leftmost bit. Invert 
the digits of a positive binary 
number, add 1 to it

Used for subtracting numbers

Binary Coded Decimal

In a nibble, numbers 0-9 are valid 
in BCD and the 10-15 are invalid.

When a nibble is greater than 9, 
add 6 (0110) to it to convert to 
BCD.

51



End of topic questions

3.



End of topic questions

1. Convert the following denary numbers to binary.

a) 13

b) 52

c) 145

2. Convert the following binary numbers to denary.

a) 1010

b) 111000

c) 11110111

3. How many megabytes are there in 3 terabytes?

53



End of topic questions

4. Add the following binary numbers. Show the necessary working.

a) 1011 + 1001

b) 10110110 + 1010 0011

5. An 8-bit register holds the binary value 1110 0101.

a) What is the contents of this register after a left shift of 2 bits?

b) What is the contents of this register after a right shift of 2 bits?

54



End of topic questions

6. Register A is an 8-bit register with MSB as bit 7 and LSB as bit 0. What

mask and logical operator will you use for the following operations?

a) Complementing bit 3 and bit 6?

b) Setting bit 0, bit 1, bit 2 and bit 3 to 1?

7. This question is about BCD addition.

a) How are the numbers 1.28 and 3.74 represented in BCD?

b) Show how the two numbers in answer (a) are added in BCD

format?

55


	Slide 1: Binary representation
	Slide 2: Lesson Objectives
	Slide 3: Content
	Slide 4: Introduction
	Slide 5
	Slide 6: Place value of denary system
	Slide 7: Place value of binary system
	Slide 8: Place value of binary system
	Slide 9: Place value of binary system
	Slide 10: Converting denary to binary
	Slide 11: Converting denary to binary
	Slide 12: How to check your answer?
	Slide 13: Activity-1 Duration: 15 minutes
	Slide 14: Size of computer memory
	Slide 15: Size of computer memory
	Slide 16: Size of computer memory
	Slide 17: Binary combinations
	Slide 18: Binary combinations
	Slide 19: Representing numbers
	Slide 20: Adding binary numbers
	Slide 21: How to check your answer?
	Slide 22: Overflow error
	Slide 23: Overflow error
	Slide 24: Activity-2 Duration: 15 minutes
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Finding two’s complement
	Slide 42: Finding two’s complement
	Slide 43: Subtracting numbers: Using two’s complement
	Slide 44: Subtracting numbers: Using two’s complement
	Slide 45: Activity-3 Duration: 15 minutes
	Slide 46: Binary Coded Decimal (BCD)
	Slide 47: Binary Coded Decimal (BCD)
	Slide 48: Binary Coded Decimal (BCD)
	Slide 49
	Slide 50: Let’s review some concepts
	Slide 51: Let’s review some concepts
	Slide 52: End of topic questions
	Slide 53: End of topic questions
	Slide 54: End of topic questions
	Slide 55: End of topic questions

