
7.2. Translators and IDE

A-level
Computer Science



Lesson Objectives

Students will learn about:

▪ Translators

▪ Stages of compilation

▪ Dynamic link libraries

▪ Linkers & Loaders

▪ IDE

▪ Errors and debugging

2



Translators



Programs can be written 

in high-level or low-level 

languages, according to 

the requirements of the 

user.

4

Binary code

Machine code

Assembly languages

High-level languages

Understandable 
by machine

Understandable by 
human



High level languages

▪ High-level languages enable a programmer to write programs 

for a computer without the knowledge of the hardware and 

instruction sets of that computer. 

▪ Portable programs: can be used in different systems

▪ For example: Java, C++ and Python

▪ Same programming concept can be applied to different high-

level languages.

5



Assembly language

6

▪ Assembly language is used by programmers to make use of 

special hardware. 

▪ Instructions used are dependent upon the type of machine. 

▪ The code does not take up much space of primary memory and 

performs its task quickly.  



Translators

7

A utility program that 

translates the program written 

by programmers in assembly 

or high-level language into 

binary form, which is 

understandable by the 

computer, is called a translator. 

Compiler
High-level 
language

Machine 
code

Interpreter
High-level 
language

Executes 
each 

statement

Assembly
language

Machine 
code

Assembler 

Input Output



Assembler

8

▪ A computer program that translates 
a program written in an assembly 
language into machine code.

▪ Sometimes, assembly language 
programs are converted to an 
intermediate code called bytecode.

▪ Once assembled, the same code can 
be used again multiple times 
without re-assembly.

Assembly
language

Machine 
code

Assembler 



Assembler

9

▪ Sometimes, the assembler generates 
an intermediate code called bytecode.

▪ Processors based on different 
architectures have different assembly 
language instructions.

▪ The input to the assembler is called 
source code.

Assembly
language

Machine 
code

Assembler 



Compiler

10

▪ A computer program that translates a 
program written in a high-level 
language into machine code that can 
be directly used by a computer to 
perform required tasks. 

Compiler
High-level 
language

Machine 
code



Compiler

11

▪ Once compiled, the same code 
can be used again multiple 
times without recompilation. 

▪ A compiler optimises the code 
and errors are picked up only 
after the complete compilation 
of a program.

▪ Once a code is compiled, it is 
hard to convert it back to its 
source code.

▪ Hence, it is hard to modify 
compiled codes.



Compiler

12

▪ The program in a high-level 
language is source code.

▪ Hardware specific object code is 
produced.

▪ Different platforms will require 
different compilers.

▪ Windows OS + intel processors 
→ platform. 

▪ Apple’s operating system + 
PowerPC → platform. 



Interpreter

13

▪ A computer program that reads 
a statement from a program 
written in a high-level language, 
converts it into intermediate 
code and then proceeds to the 
next statement and so on. 

▪ Intermediate code: assembly 
language

Interpreter
High-level 
language

Executes 
each 

statement

Source code
Intermediate 

code
Machine 

code



Interpreter

14

▪ This intermediate code is then 
converted to machine code 
and then, executed. 

▪ In case an error is found, the 
interpreter prompts the user 
to correct the error. 

▪ Code does not get optimised. 

Interpreter
High-level 
language

Executes 
each 

statement

Source code
Intermediate 

code
Machine 

code



Interpreter

15

▪ Interpreter finds out 
errors before the 
execution of program.

▪ Syntax error in Python 
IDE for missing 
semicolon.



16
Compiler Interpreter

Source code is compiled 

separately for each architecture.

Used in case the source code is used in machines 

of different architectures. The interpreted 

programs are then, compiled. Interpreted codes 

are free of errors. But the time taken to execute 

the code increases.

Executable file of machine code is 

produced. 

No executable file of machine code is produced. 

Complete translation of the code 

and errors are picked up only

after the completed translation.

Step-by-step execution and errors are picked up 

once found.

Optimisation of code. No optimisation of code.

Compiled programs work 

independently without re-

compilation.

Interpreted programs can only be used with the 

interpreter.



17

Compiler Interpreter Assembler

What it does

Translates a high-level 

language into 

machine code.

Executes one 

statement of high-level 

language at a time and 

then proceeds to the 

next.

Translates a low-level 

language into 

machine code.

How it 

works

One statement in 

high-level language 

can be translated into 

several machine code 

instructions.

One statement in high-

level language may 

require several 

machine code 

instructions to be 

executed.

One statement in 

low-level language is 

translated into one 

machine code 

instruction.



18

Compiler Interpreter Assembler

Output

Executable file of 

machine code is 

produced. Compiled 

programs work 

independently 

without re-

compilation.

No executable file of 

machine code is 

produced. Interpreted 

programs can only be 

used with the 

interpreter.

Executable file of 

machine code is 

produced. Assembled 

programs work 

independently 

without re-assembly.



Bytecode

▪ An intermediate representation that combines compiling and 

interpreting. 

▪ Executed by bytecode interpreter.

▪ Java codes are compiled once.

19

Java program Compile JVM

Bytecode



Java Virtual machine

▪ Converts the bytecode to machine code understandable to that 

machine. 

▪ Now, machine independence is achieved for Java programs. 

20

Java program Compile JVM

Bytecode Machine 
code



Advantages

▪ Enhances security: Bytecode of programs from unknown sources is run 

in JVM first. If it is found not to be malicious, the main program is run.

▪ Machine independence.

▪ In Python, the bytecode is generated before execution every time the 

source code is changed.

21

Python 
program

Jython
Compile

JVM

Java 
Bytecode

Machine 
code



Stages of compilation

22

Lexical analysis
Syntax & 
Semantic 
analysis

Code 
generation 

& 
optimisation



Lexical analysis: functions

▪ Comments in a program are specified using # or // symbol. These

comments are removed. Unwanted spaces are also removed.

For example: num = int ( input (“Enter a number”) ) is converted to

num=int(input(“Enter a number”))

▪ There are rules to name variables in programming languages. One of the

rules in Python is that name of a variable cannot start from a number. In

lexical analysis, the variable name 2num would be marked as an illegal

identifier.

23



Lexical analysis: functions

▪ An error also arises in case a constant is assigned an illegal value such as

of different data type. In such cases, an overflow or underflow error

occurs.

▪ Keywords, constants and variables are replaced with unique symbols

called tokens. Identifiers are replaced by pointer to the address of the

location of variable. Keywords such as input, if, return and print are

replaced by item codes.

24



Lexical analysis: symbol table 

Stores detail about keywords, variables and constants used in the source

code. For each entry in the symbol table, the following details are entered:

▪ Name of variable or keyword.

▪ Kind of item: Variable, keyword, constant, procedure, function or array.

▪ Data type of item: Float, int, char, string, date or Boolean.

▪ Address of the item or value of constant.

▪ Location information is required to access arrays. Array index must be 

within the bounds of the array. So, bounds of array is stored.

▪ Procedures and function require information about each parameter 

such as its data type. 

25



Lexical analysis: symbol 
table 

Consider the statement to find 

the area of rectangle in Python. 

Area = width * height

The symbol table of this 

statement with run-time values 

for example is given.

26

Name 
of item

Kind of 
item

Data 
type

Run-time 
address or 

value

Area variable float 12.00

= operator

width variable float 3.00

height variable float 4.00

* operator



Lexical analysis: tokenisation

▪ After the creation of symbol table, each item is tokenised. The statement

Area = width * height may be tokenised as 7 1 2 3 6.

▪ The lexical analyser fills in the name of the item and the run-time address

or value column.

▪ The kind and type of item columns are filled by the syntax analyser in the

next stage of compilation.

27



Syntax analysis

▪ A tool that determines whether the sequence of tokens obey the rules of

a valid sentence in the language.

▪ Parsing: a task that determines whether each sentence is valid by

applying a set of rules.

▪ Brackets in programs must be paired correctly. This is checked using

stacks.

▪ Arithmetic operators are analysed and prioritised.

30



Syntax analysis

▪ The expressions are also converted into a form such that it can be easily

converted to machine code.

▪ Syntax errors:

• Unpaired brackets

• Missing semicolons

• Misspelt keywords

31



Semantic analysis

▪ Semantics represent the meaning of the language.

▪ Whereas, syntax represents the grammar of the language.

▪ Semantic errors:

• Using undeclared variables (in some languages).

• Type mismatch error: assigning a real value to an integer variable.

• Using a real value to count the number of loops.

32



Semantic analysis

Consider this program:
Num = 10

Subject = ‘Computing’

print(num)

print(subject)

print(num + subject)

33

User

1



Code generation & Optimisation

▪ Final phase of compilation in which machine code is generated.

▪ Code optimisation techniques help in the reduction of execution time and

resources used by a program.

▪ This is done by removing redundant instructions and changing the way a

program runs but still producing the same results.

34



Code generation & Optimisation

▪ For example: assigning a value to a variable inside a loop is better when

its placed outside a loop.

▪ This avoids the execution of the same statement numerous times.

▪ Due to this action, certain programs may produce incorrect results.

▪ Code optimisation also leads to an increase in compilation time in some

cases.

35



Dynamic linked libraries

▪ Dynamic linked library is a shared library of sub-programs.  These sub-

programs are used by programmers in their programs whenever 

required.

▪ Some routines are used by programmers several times in their program. 

So, a library of such routines is developed and tested. 

▪ When the statement for call of routine is translated, the code for the 

routine is taken from the library and executed. 

36



Linkers

▪ When the main program is compiled, the compiled subroutines must be 

linked to the machine code. This is done by linker. 

▪ When a subroutine is used, call and return statements transfer the 

control from the main program to a subroutine and vice versa. 

▪ The function of linker is to provide machine addresses at the call and 

return statements. 

▪ Ensures that the modules are linked together. 

37



Loaders

▪ A relocating loader loads object codes anywhere in the memory. 

▪ Some conditions are applicable for the functioning of relocating loader: 

• Program must not contain any absolute address 

• Program must be in a relocatable format.

38



Activity

2.



Activity-1
Duration: 15 minutes

1. What are the advantages and disadvantages of high-level and

low-level languages?

2. What translation software is used to translate high-level and

low-level languages to machine code? State the process

involved with each translator in a diagram below.

40



Activity-2
Duration: 15 minutes

1. Analyse the Python code 

given. There are few 

errors. State any two 

things performed by:

a) Lexical analysis

b) Syntax analysis

41

1count=0

total=0

while (1count<5)

value=int (input("Enter a number:“)

1count=1count + 1

total = total + value

print("The total is: ", total)

Average = total / 1count

print("The average is: %.2f" %average)



End of topic questions

3.



End of topic questions

1. In what case does a programmer choose low-level languages

over high-level language?

2. When does a programmer choose high-level languages over low-

level language?

3. What are translators?

4. How is the function of a compiler different from an interpreter?

5. What is the function of an assembler?

43



End of topic questions

6. What are the advantages of using bytecodes?

7. What are the functions of lexical analyser?

8. State the type of errors that arise in lexical analysis. Also, specify

when do these errors occur.

9. State examples of syntax errors and semantic errors.

10.What is dynamic link library?

11.What is the function of linker?

44



Integrated development 
environment



Content

▪ Debugging using IDE

▪ Types of errors

▪ Different types of test data 

▪ Trace tables: finding and correcting errors in algorithms

▪ Software maintenance activities

46



Integrated Development 
Environment (IDE)

Integrated development 

environment consists of an 

editor with an interpreter and or 

compiler and debugging tools. 

47

Editor

Compiler 

Debugging tools

Interpreter 



Integrated Development 
Environment (IDE): Editor

▪ Editor is a tool used by the programmer to write, edit and save codes. 

▪ Editor looks like a word processor, but formatting options are not 

provided because formatting could contaminate the embedded codes.

▪ Editors also make the process of writing codes simpler. The codes 

written using editors are more readable. 

▪ Conditional and iterative statements are identified, and the statements 

to be executed for a condition or in a loop are indented. 

▪ Variables are presented in different colours.

48



IDE

49

▪ Idle used for Python 

programming.

▪ The coloured statements 

and indentations help us 

to understand the 

program.

▪ Program to find the total 

and average of 5 

numbers entered by a 

user.

Editor



Integrated Development 
Environment (IDE)

▪ IDE is used in the development of high-level language as it improves the 

speed of program development. 

▪ Microsoft Visual Studio is an example of an Integrated Development 

Environment that is used to develop apps for Android, iOS, Mac and 

Windows.

▪ IDE allows the user to enter the code, edit it, debug errors and then 

compile it. Some IDEs also contain an interpreter. 

▪ The tools provided by an IDE to check and correct errors are called 

debugging tools.

50



Syntax error

Syntax errors occur when 

the programming rules 

are not followed.

51



In line 2, the syntax error 

is identified. It states 

‘invalid syntax’. This is 

because the colon at the 

end of the line is missing.

The correct statement is:

if weight>85:

52



Syntax error

▪ Some other examples of syntax errors in Python include: 

✔ incompatible variable types

✔ incorrect variable names due to spelling 

✔ improper assignments. 3+5=k is an example of an improper 

assignment. It should be k=3+5. 

▪ In other programming languages, the variable declaration is very 

important. Missing or improper variable declarations is a syntax error.

53



Logic errors

▪ When a program runs, if it produces incorrect or unexpected 

results, it is said to contain logic errors. 

▪ An incorrect translation of problem statement or algorithm leads to 

logic error. 

▪ Incorrect expressions and algorithms are examples of logic errors.

54



Run-time errors

▪ Run-time errors are said to occur when the program execution 

comes to an unexpected halt or crashes. For example, infinite loops. 

▪ Dividing a number by zero results in a run-time error. Let us 

execute a program that divides two numbers.

Input (p)

Input (q)

answer=p/q

▪ If q=0, a ZeroDivisionError occurs in line 3. This is because a 

number cannot be divided by zero.

55



Run-time errors: Example 
of output

56

Input (p)

Input (q)

answer=p/q

The syntax is correct but an error is found when the program

runs. The position of the error is also stated.



IDE: Debugger

▪ To check for logic errors, an IDE 

provides a debugger. 

▪ Debugging is the process of finding and 

correcting errors in a program. 

▪ Using this option, the value of a variable 

can be tracked every time it changes. 

▪ The debugger is selected from the 

debug menu in the Python IDE. 

▪ The statement [DEBUG ON] is printed 

on the shell.

57



IDE: Breakpoint

▪ A breakpoint shall be set at any 

statement in the program by right-

clicking and selecting “Set 

breakpoint”. 

▪ The statement is now highlighted in 

yellow. 

▪ A breakpoint is a marker that 

transfers the control from computer 

to human. 

▪ The execution of the program stops 

at the breakpoint, and the values of 

variables can be checked.

58



IDE: Breakpoint

▪ In some IDEs, you may set a watch 

on a variable to display every time it 

changes. 

▪ You may also use the step-through 

option to execute a line at a time.

▪ Running the program with the 

breakpoint. Please note the value of 

variables shown for count=2. 

▪ In case, any of your program 

produces incorrect results, use this 

option to track the changes in 

variables. 

59



IDE: Breakpoint
▪ The screenshot of the Python shell 

and debug control after the 

complete execution of this program 

is given.

60



Testing programs

▪ A set of test data is applied to the algorithm to check its correctness. 

Types of test data are:

a) Normal data

b) Erroneous or abnormal data 

c) Boundary data

61



Normal data

▪ A set of test data used together with the expected results is called normal 

data. For example: For an algorithm calculating the average mark out of 100 

scored by five students in a group,

▪ Normal test data: 76, 80, 63, 80, 90

▪ Expected result: 77.8

▪ Because the range is 0 to 100, the normal test data consists of numbers 

between them (1-99). 

62



Erroneous or abnormal 
data

▪ Sets of values that a particular subsystem is expected to reject are called 

erroneous data. For example: For an algorithm where marks are only positive 

numbers,

▪ Erroneous data: -11, ten

▪ Result: invalid input values

63



Boundary data

▪ The largest and smallest values that an algorithm can accept are called 

boundary data. For example, The minimum and maximum marks that can be 

scored are 0 and 100. 

▪ Boundary data: 0, 100

▪ Result: valid input values

64



Trace table

▪ A trace table records the value of variables every time it changes in an 

algorithm. 

▪ Using a trace table, the change of values of a variable due to each operation 

can be noted. This process is called a dry run. 

▪ Trace tables are widely used to identify logic errors (if any) in an algorithm.

65



Trace table

▪ Let us consider the algorithm given 

here, which calculates and analyses 

BMI. Weight is entered in kg and 

height is entered in m. 

▪ The healthy range of BMI is 18.5 to 

24.9. A BMI of 25.0 or more is 

overweight.

66



Trace table

▪ A trace table consists of 

columns representing each 

variable and a column for 

output. 

▪ Let us consider this test data 

(weight, height): (80, 1.70), (70, 

1.65), (72, 1.65), (65, 1.55), (55, 

1.50), (75, 1.65), (70, 1.75) and 

(52, 1.44).

67

Weight (kg) Height (m) round(BMI) Result 

80 1.70 28 Overweight

78 1.65 29 Overweight

72 1.65 26 Overweight

65 1.55 27 Overweight

55 1.50 24 Normal

75 1.65 28 Overweight

70 1.75 23 Normal

52 1.44 25 Normal



▪ A deliberate error was made at the 

conditional statement. 

▪ The last test data (51.8, 1.44) calculates 

the BMI to be 25, but the result is 

normal. 

▪ This data helps us to identify an error 

in the algorithm. 

▪ In the algorithm, the conditional 

statement should be BMI ≥ 25.0 

instead of BMI > 25.

▪ In this algorithm, further conditional 

statements can be included for 

additional conditions such as obese 

(BMI ≥ 30.0).

68

Weight (kg) Height (m) round(BMI) Result 

80 1.70 28 Overweight

78 1.65 29 Overweight

72 1.65 26 Overweight

65 1.55 27 Overweight

55 1.50 24 Normal

75 1.65 28 Overweight

70 1.75 23 Normal

52 1.44 25 Normal



Let’s review some concepts

Integrated Development 
Environment

A tool used to develop programs 
of a high-level language. It 
consists of an editor with an 
interpreter and/or compiler and 
debugging tools.

Syntax errors

Programming rules are not 
followed.

Logic errors

Incorrect or unexpected results

Run-time errors

Unexpected halt or crash

Debugger

Setting breakpoints and tracing the 
change in variables at every step.

69

Trace table

A trace table records the value of 
the results of variables at each 
step of an algorithm. Using a 
trace table, the change of values 
of a variable due to each 
operation can be noted. 

Testing

A part of software development 
to make sure that the system is 
working as expected. Types of 
test data:
▪ Normal data
▪ Erroneous or abnormal data 
▪ Boundary data

Dry run

The process of recording the 
value of the variable in an 
algorithm every time it changes.

Software maintenance

Corrective maintenance, adaptive 
maintenance & perfective 
maintenance.



Activity

2.



Activity-1 
Duration: 10 minutes

1. A Python program is given. Test

data is: 1, 2, 3, 4, 5, 6, -1.

Complete the trace table.

71

a=0

b=0

c=0

d=int(input(‘Enter a number:

’))

while (d>0):

a=a+d

c=c+1

d=int(input(‘Enter a number:

’))

b=a/c

print(b)

a b c d

… … … …



Activity-2 
Duration: 10 minutes

1. Complete the trace table for the algorithm. The input value is 7.

input a

for b in range(1,a)

c=a-b

d=5*c-b

end for

print(b)

72

a b c d

… … … …



End of topic questions

3.



End of topic questions

1. What are run-time errors, logic

errors and syntax errors? Give

examples for both. Explain how are

these identified and corrected in a

program.

2. A Python program is given. The test

data is: 1, 2, 3, 11, -1. Create and

complete the trace table for this test

data.

75

a=1

b=0

c=0

d=int(input(‘Enter a number:

’))

while (d>0):

a=a*d

c=c+1

d=int(input(‘Enter a number:

’))

b=a%c

print(b)



4. The algorithm calculates the total

and average of numbers entered by

the user.

Create a trace table and dry run this

algorithm using test data for

count=6. Choose your own values

for number.

5. What are the three main software

maintenance activities? How are

they different from each other?

77

print (‘How many numbers?’)

input count

total ← 0

j← count

while (count >0) do

print(‘Enter a positive 

number’)

input number

count =count -1

total=total + number

endwhile

average=total/j

print(total, average)



Let’s review some concepts

Translators

A utility program that translates 
the program written by 
programmers and codes in 
assembly language into binary 
form, which is understandable by 
the computer.

Compiler

Translates a high-level 
language code into machine 
code.

Interpreter

Executes one statement of high-
level language at a time and then 
proceeds to the next.

Assembler

A computer program that 
translates a program written in 
an assembly language into 
machine code.

Stages of compilation

Lexical analysis

Syntax & semantic analysis

Code generation & optimisation

Dynamic Link Libraries

Dynamic linked library is a shared 
library of sub-programs. These sub-
programs are used by programmers 
in their programs whenever required.

Linkers & Loaders

78


	Slide 1: 7.2. Translators and IDE
	Slide 2: Lesson Objectives
	Slide 3: Translators
	Slide 4: Programs can be written in high-level or low-level languages, according to the requirements of the user.
	Slide 5: High level languages
	Slide 6: Assembly language
	Slide 7: Translators
	Slide 8: Assembler
	Slide 9: Assembler
	Slide 10: Compiler
	Slide 11: Compiler
	Slide 12: Compiler
	Slide 13: Interpreter
	Slide 14: Interpreter
	Slide 15: Interpreter
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Bytecode
	Slide 20: Java Virtual machine
	Slide 21: Advantages
	Slide 22: Stages of compilation
	Slide 23: Lexical analysis: functions
	Slide 24: Lexical analysis: functions
	Slide 25: Lexical analysis: symbol table 
	Slide 26: Lexical analysis: symbol table 
	Slide 27: Lexical analysis: tokenisation
	Slide 30: Syntax analysis
	Slide 31: Syntax analysis
	Slide 32: Semantic analysis
	Slide 33: Semantic analysis
	Slide 34: Code generation & Optimisation
	Slide 35: Code generation & Optimisation
	Slide 36: Dynamic linked libraries
	Slide 37: Linkers
	Slide 38: Loaders
	Slide 39: Activity
	Slide 40: Activity-1 Duration: 15 minutes
	Slide 41: Activity-2 Duration: 15 minutes
	Slide 42: End of topic questions
	Slide 43: End of topic questions
	Slide 44: End of topic questions
	Slide 45: Integrated development environment
	Slide 46: Content
	Slide 47: Integrated Development Environment (IDE)
	Slide 48: Integrated Development Environment (IDE): Editor
	Slide 49: IDE
	Slide 50: Integrated Development Environment (IDE)
	Slide 51: Syntax error
	Slide 52
	Slide 53: Syntax error
	Slide 54: Logic errors
	Slide 55: Run-time errors
	Slide 56: Run-time errors: Example of output
	Slide 57: IDE: Debugger
	Slide 58: IDE: Breakpoint
	Slide 59: IDE: Breakpoint
	Slide 60: IDE: Breakpoint
	Slide 61: Testing programs
	Slide 62: Normal data
	Slide 63: Erroneous or abnormal data
	Slide 64: Boundary data
	Slide 65: Trace table
	Slide 66: Trace table
	Slide 67: Trace table
	Slide 68
	Slide 69: Let’s review some concepts
	Slide 70: Activity
	Slide 71: Activity-1  Duration: 10 minutes
	Slide 72: Activity-2  Duration: 10 minutes
	Slide 74: End of topic questions
	Slide 75: End of topic questions
	Slide 77
	Slide 78: Let’s review some concepts

